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Getting Physical (1) Initial Experience
(1998)

= Extremely simple, but
still it creates a new experience

= 2-Bit Input
* Not an input device

= Very specific function

A. Schmidt, M. Beigl, H. Gellersen. There is more to context than location. Computers and Graphics, 23(6):893--901, 1999.
http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/schmidt cug elsevier 12-1999-context-is-more-than-location.pdf
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Knife that “knows” what its cuts
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Matthias Kranz, Albrecht Schmidt, Alexis Maldonado, Radu Bogdan Rusu, Michael Beetz, Benedikt Hornler, and Gerhard Rigoll. 2007. Context-aware kitchen utilities. In
Proceedings of the 1st international conference on Tangible and embedded interaction (TEI '07). Association for Computing Machinery, New York, NY, USA, 213-214. DOI:

https://doi.org/10.1145/1226969.1227013
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Radio Tags for Activity Sensing

Trimmer Antenna Output
Capacitor ‘

Energy Input Rectifier SCR

Yang Zhang, Yasha Iravantchi, Haojian Jin, Swarun Kumar, and Chris Harrison. 2019. Sozu: Self-Powered Radio Tags for Building-Scale Activity Sensing. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19). ACM, New York, NY, USA, 973-985. DOI:
https://doi.org/10.1145/3332165.3347952 Video: https://youtu.be/wbg-eOOIPyw
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Vibrometry for Environment Sensing

Visible red laser used for demonstration

https://youtu.be/51XaZDki6yg

Yang Zhang, Gierad Laput, and Chris Harrison. 2018. Vibrosight: Long-Range Vibrometry for Smart Environment Sensing. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (UIST '18). ACM, New York, NY, USA, 225-236. DOI: https://doi.org/10.1145/3242587.3242608
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Extracting Contextual Information

Users Location
- GPS
= Direction of Voice

Users Activity

Users Emotion

Users Pose

Objects Surrounding the User
Status of Objects
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Individual Typing Behaviour
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[Findlater and Wobbrock 2012] [Buschek et al. 2018]

Intelligent Text Entry 12 Sven Mayer & Daniel Buschek



Adapting Keyboards to Typists

Overview
Visible keyboard Collect touches Adapt underlying
key regions
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Intelligent Text Entry 13 Sven Mayer & Daniel Buschek



Modelling Touchscreen Keypresses

From x,y touch points to one Gaussian per key
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@ [Azenkot and Zhai 2012]

Gaussian key model: likelihood

(shown in 1D here)

p(t|k) = N (1, o)

p-o M w+o touch location t

X,y

Intelligent Text Entry 14 Sven Mayer & Daniel Buschek



Probabilistic Keyboard Model

Which key does the user intend to press? i.e. ,,input decoding“

(G I@OE (@0 Gaussian Language e.g.basedon |
: d, ; C@d}) key model model ;E;{ 1V|ekihja0t;:_ 5)
&
t\k)p(k
k" = argmax (p( K)p( )) = argmax (p(t|k)p(k))

keK p(t) keK

predicted Bayes' rule

keypress — p(k|t)

Evaluate and colour k‘ for each pixel

Intelligent Text Entry 15 Sven Mayer & Daniel Buschek




Gesture-based Decoding

¢ help hello jello

qwe® resguibop

,SHARK?" [Kristensson an d Zhai 2004]

Microsoft Swiftkey (screenshot Nov 2020)



Context-Aware Keyboards

Adapt underlying
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= Palm detection — input rejection
= Finger identification, Finger Orientation — model improvement

= Grip detection — model selection



Palm Detection

Convolutional Neural Network
Classification
Representation Learning
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Huy Viet Le, Thomas Kosch, Patrick Bader, Sven Mayer, and Niels Henze. 2018. PalmTouch: Using the Palm as an
Additional Input Modality on Commodity Smartphones. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 360, 1-13. DOI: https://doi.org/10.1145/3173574.3173934
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Finger Orientation

= Convolutional Neural Network
= Regression
= Representation Learning

Pitch: 4°
CNN

Yaw:
17°

Sven Mayer, Huy Viet Le, and Niels Henze. 2017. Estimating the Finger Orientation on Capacitive Touchscreens Using
Convolutional Neural Networks. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and
Spaces (ISS '17). ACM, New York, NY, USA, 220-229. DOI: https://doi.org/10.1145/3132272.3134130
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Itsy-Bits: Fabrication and Recognition of 3D-Printed
Tangibles with Small Footprints on Capacitive Touchscreens

Figure 1: Itsy-Bits recognizes 3D-printed tangibles as small as a fingertip via the capacitive image of an embedded conductive

shape (A). This opens up a variety of tangible user interfaces on the most common form factors of touchscreens, such as
individualized interactive board games (B) or a more tangible learning experience (C).

Martin Schmitz, Florian Muller, Max Mihlhauser, Jan Riemann, and Huy Viet Viet Le. 2021. Itsy-Bits: Fabrication and Recognition of 3D-Printed Tangibles with
Small Footprints on Capacitive Touchscreens. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, Article 419, 1-12. DOI: https://doi.org/10.1145/3411764.3445502
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Itsy-Bits: Fabrication and Recognition of 3D-Printed Tangibles
with Small Footprints on Capacitive Touchscreens
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Martin Schmitz, Florian Muller, Max Mihlhduser, Jan Riemann, and Huy Viet Viet Le. 2021. Itsy-Bits: Fabrication and Recognition of 3D-Printed Tangibles with

Small Footprints on Capacitive Touchscreens. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, Article 419, 1-12. DOI: https://doi.org/10.1145/3411764.3445502
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Activity Recognition — Accelerometers
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Mi Zhang and Alexander A. Sawchuk. 2012. USC-HAD: a daily activity dataset for ubiquitous activity recognition using
wearable sensors. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp '12). Association for
Computing Machinery, New York, NY, USA, 1036—1043. DOI: https://doi.org/10.1145/2370216.2370438

22

Deep Learning Methods for
Multimodal Human Activity
Recognition, Paul Lukowicz,
DFKI/TU Kaiserslautern
(Monday, 11 October 10:00)
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Neuronal Network With Timeseries Data

Recurrent Neural Network

Long short-term

memory (LMST)

Input

In depth LSTM tutorial: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
Code Examples: https://github.com/cwi-dis/mobile-har-tutorial



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/cwi-dis/mobile-har-tutorial

Smart Environments - Direction-of-Voice

Feature Extraction e.g. volume, speech frequency ratio

Machine Learning e.g. ensemble-based decision trees
; | |

Smartphone

Hello!

(-

Karan Ahuja, Andy Kong, Mayank Goel, and Chris Harrison. 2020. Direction-of-Voice (DoV) Estimation for Intuitive Speech
Interaction with Smart Devices Ecosystems. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology (UIST '20). ACM, New York, NY, USA, 1121-1131. DOI: https://doi.org/10.1145/3379337.3415588
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Smart Environments - Direction-of-Voice

Smartphone

The time is 11:42 am.

Karan Ahuja, Andy Kong, Mayank Goel, and Chris Harrison. 2020. Direction-of-Voice (DoV) Estimation for Intuitive Speech
Interaction with Smart Devices Ecosystems. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology (UIST '20). ACM, New York, NY, USA, 1121-1131. DOI: https://doi.org/10.1145/3379337.3415588

25 Sven Mayer



https://doi.org/10.1145/3379337.3415588

LSMTs in Adaptive Uls

RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature Radar Sensor

Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal,
and Ivan Poupyrev. 2021. RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature
Radar Sensor. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, Article 5, 1-14. DOI: https://doi.org/10.1145/3411764.3445367
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LSMTs in Adaptive Uls

Figure 1: A time series visualization of a left swipe motion with absolute range Doppler maps (top) and interferometry maps
(bottom). A hand moving close to a Soli chip round 6th frame, then, moving away. In the interferometry maps, the color of
cells s at the same position as hand above changed from red to green, and to blue, showing the hand moving right to left.

Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal, and lvan Poupyrev. 2021. RadarNet: Efficient Gesture
Recognition Technique Utilizing a Miniature Radar Sensor. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, Article 5, 1-14. DOI: https://doi.org/10.1145/3411764.3445367
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LSMTs in Adaptive Uls

RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature Radar Sensor
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Figure 6: The pipeline applies signal processing algorithms to the radar signals to compute complex range Doppler maps for
each burst. The complex range Doppler maps are converted into a summary consisting of 32 values with the frame model
of the RadarNet. Then the summaries in the last 12 frames are processed by the temporal model of the RadarNet to make
portrait, landscape, and omni predictions. Finally, the gesture debouncer output recognizes gestures.

Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal, and Ivan Poupyrev. 2021. RadarNet: Efficient Gesture
Recognition Technique Utilizing a Miniature Radar Sensor. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, Article 5, 1-14. DOI: https://doi.org/10.1145/3411764.3445367
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LSMTs in Adaptive Uls

RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature Radar Sensor
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Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal, and Ivan Poupyrev. 2021. RadarNet: Efficient Gesture
Recognition Technique Utilizing a Miniature Radar Sensor. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, Article 5, 1-14. DOI: https://doi.org/10.1145/3411764.3445367
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LSMTs in Adaptive Uls

RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature Radar Sensor
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Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal, and Ivan Poupyrev. 2021. RadarNet: Efficient Gesture
Recognition Technique Utilizing a Miniature Radar Sensor. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, Article 5, 1-14. DOI: https://doi.org/10.1145/3411764.3445367
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Human Pose Detection

= Keypoint Estimation
= Multi-stage CNN

Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose: realtime multi-person 2D pose
estimation using Part Affinity Fields. IEEE transactions on pattern analysis and machine intelligence 43, no. 1 (2019): 172-
186. DOI: https://doi.org/10.1109/TPAMI.2019.2929257
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Face and Facial
landmark detection

Camera based Gaze Estimation

normalisation . » @ ) .
L

Input image Facial landmarks Gaze prediction Gaze direction Projection on screen

>

Xucong Zhang, Yusuke Sugano, and Andreas Bulling. 2019. Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, New York, NY, USA, Paper 416, 1-13. DOI: https://doi.org/10.1145/3290605.3300646 URL.:
http://www.opengaze.org/

https://youtu.be/9Lujg3beiYI
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Camera based Gaze Estimation

= Convolutional Neural Network
= Regression — x/y cornindates
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Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2017. It's written all over your face: Full-face appearance-
based gaze estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
51-60. 2017. DOI: https://doi.org/10.1109/CVPRW.2017.284

33 Sven Mayer



https://doi.org/10.1109/CVPRW.2017.284

Enhanced Voice Assistants

Front Camera Rear Camera

Sven Mayer, Gierad Laput, and Chris Harrison. 2020. Enhancing Mobile Voice Assistants with WorldGaze. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (CHI '20). Association for Computing Machinery, New York, NY, USA, 1-10. DOI: https://doi.org/10.1145/3313831.3376479
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Object Detection

“on”

“what is the price difference
between this...

T

Sven Mayer, Gierad Laput, and Chris Harrison. 2020. Enhancing Mobile Voice Assistants with WorldGaze. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (CHI '20). Association for Computing Machinery, New York, NY, USA, 1-10. DOI: https://doi.org/10.1145/3313831.3376479
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Object Detection

R-CNN: Regions with CNN feature

aeroplane? no.

person? yes.

A} :
AN = tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and
semantic segmentation (2014) In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-
587. DOI: https://doi.org/10.1109/CVPR.2014.81 Source Code: https://github.com/rbqirshick/rcnn

Users' Context in Smart Environments

Sven Mayer


https://doi.org/10.1109/CVPR.2014.81
https://github.com/rbgirshick/rcnn

https://youtu.be/MPU2Histivl

Object Detection

Joseph Redmon, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
URL: https://pjreddie.com/darknet/yolo/
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Data Generation: GAN Super-Resolution

camera image

FTIR
two contacts

capacitance
contacts merge

FTIR 16-bit mutual- CapContact

(ground truth) capacitance upsampled cross-modal

super-resolution upsampled
contacts merge

CapContact
two contacts

thresholded

Paul Streli and Christian Holz. 2021. CapContact: Super-resolution Contact Areas from Capacitive Touchscreens. Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. ACM, New York, NY, USA, Article 289, 1—-14. DOI: https://doi.org/10.1145/3411764.3445621



Data Generation: GAN Super-Resolution

CapContact: Super-resolution Contact Areas from Capacitive Touchscreens
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Paul Streli and Christian Holz. 2021. CapContact: Super-resolution Contact Areas from Capacitive Touchscreens. Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. ACM, New York, NY, USA, Article 289, 1-14. DOI: https://doi.org/10.1145/3411764.3445621
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Machine Learning for HCI

User Centered Design Cycle ISO 9241
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Design Improvment Iteration

Huy Viet Le, Sven Mayer, and Niels Henze. 2020. Deep learning for human-computer interaction. interactions 28, 1 (January -
February 2021), 78-82. DOI: https://doi.org/10.1145/3436958
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Machine Learning for HCI
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Huy Viet Le, Sven Mayer, and Niels Henze. 2020. Deep learning for human-computer interaction. interactions 28, 1 (January -
February 2021), 78-82. DOI: https://doi.org/10.1145/3436958

41

© Moy Viet Le, University of Snatigact
‘Swen Mayee, LMU Musich

L
Wieks Henze, Unwversty of Regensburg

Deep
Learning
for Human-
Computer
Interaction

Sven Mayer



https://doi.org/10.1145/3436958

License

This file is licensed under the Creative Commons Attribution-Share Alike 4.0
(CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Albrecht Schmidt, Sven Mayer, and Daniel Buschek

42



